Splitting Potential and the Poincaré-Melnikov Method for Whiskered Tori in Hamiltonian Systems

نویسندگان

  • Amadeu Delshams
  • Pere Gutiérrez
چکیده

We deal with a perturbation of a hyperbolic integrable Hamiltonian system with n+ 1 degrees of freedom. The integrable system is assumed to have n-dimensional hyperbolic invariant tori with coincident whiskers (separatrices). Following Eliasson, we use a geometric approach closely related to the Lagrangian properties of the whiskers, to show that the splitting distance between the perturbed stable and unstable whiskers is the gradient of a periodic scalar function of n phases, which we call splitting potential. This geometric approach works for both the singular (or weakly hyperbolic) case and the regular (or strongly hyperbolic) case, and provides the existence of at least n + 1 homoclinic intersections between the perturbed whiskers. In the regular case, we also obtain a first-order approximation for the splitting potential, that we call Melnikov potential. Its gradient, the (vector) Melnikov function, provides a first-order approximation for the splitting distance. Then the nondegenerate critical points of the Melnikov potential give rise to transverse homoclinic intersections between the whiskers. Generically, when the Melnikov potential is a Morse function, there exist at least 2n critical points. The first-order approximation relies on the n-dimensional Poincaré-Melnikov method, to which an important part of the paper is devoted. We develop the method in a general setting, giving the Melnikov potential and the Melnikov function in terms of absolutely convergent integrals, which take into account the phase drift along the separatrix and the first-order deformation of the perturbed hyperbolic tori. We provide formulas useful in several cases, and carry out explicit computations that show that the Melnikov potential is a Morse function, in different kinds of examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponentially Small Lower Bounds for the Splitting of Separatrices to Whiskered Tori with Frequencies of Constant Type

We study the splitting of invariant manifolds of whiskered tori with two frequencies in nearlyintegrable Hamiltonian systems, such that the hyperbolic part is given by a pendulum. We consider a two-dimensional torus with a fast frequency vector ω/ √ ε, with ω = (1,Ω) where Ω is an irrational number of constant type, i.e. a number whose continued fraction has bounded entries. Applying the Poinca...

متن کامل

Continuation of the exponentially small transversality for the splitting of separatrices to a whiskered torus with silver ratio

We study the exponentially small splitting of invariant manifolds of whiskered (hyperbolic) tori with two fast frequencies in nearly-integrable Hamiltonian systems whose hyperbolic part is given by a pendulum. We consider a torus whose frequency ratio is the silver number Ω = √ 2 − 1. We show that the Poincaré–Melnikov method can be applied to establish the existence of 4 transverse homoclinic ...

متن کامل

Exponentially Small Splitting of Separatrices and Transversality Associated to Whiskered Tori with Quadratic Frequency Ratio

The splitting of invariant manifolds of whiskered (hyperbolic) tori with two frequencies in a nearly-integrable Hamiltonian system, whose hyperbolic part is given by a pendulum, is studied. We consider a torus with a fast frequency vector ω/ √ ε, with ω = (1,Ω) where the frequency ratio Ω is a quadratic irrational number. Applying the Poincaré-Melnikov method, we carry out a careful study of th...

متن کامل

Splitting potential and Poincar e Melnikov method for whiskered tori in Hamiltonian systems

We deal with a perturbation of a hyperbolic integrable Hamiltonian system with n degrees of freedom The integrable system is assumed to have n dimensional hyperbolic invariant tori with coincident whiskers separatrices Following Eliasson we use a geometric approach closely related to the Lagrangian properties of the whiskers to show that the splitting distance between the perturbed stable and u...

متن کامل

Splitting and Melnikov Potentials in Hamiltonian Systems

We consider a perturbation of an integrable Hamiltonian system possessing hyper bolic invariant tori with coincident whiskers Following an idea due to Eliasson we introduce a splitting potential whose gradient gives the splitting distance between the perturbed stable and unstable whiskers The homoclinic orbits to the perturbed whiskered tori are the critical points of the splitting potential an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000